Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films

نویسندگان

  • Qingshan Lu
  • Zhongying Wang
  • Peiyu Wang
  • Jiangong Li
چکیده

Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NANO EXPRESS Structure and Luminescence Properties of Eu-Doped Cubic Mesoporous Silica Thin Films

Eu ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous...

متن کامل

Novel Sol–Gel Precursors for Thin Mesoporous Eu3+-Doped Silica Coatings as Efficient Luminescent Materials.

Europium(III) ions containing mesoporous silica coatings have been prepared via a solvent evaporation-induced self-assembly (EISA) approach of different single-source precursors (SSPs) in the presence of Pluronic P123 as a structure-directing agent, using the spin-coating process. A deliberate tailoring of the chemical composition of the porous coatings with various Si:Eu ratios was achieved by...

متن کامل

Deposition of ultrathin rare-earth doped Y2O3 phosphor films on alumina nanoparticles

Ultrathin films of Eu3+ doped Y2O3 were deposited onto alumina nanoparticles using a unique solution synthesis method. The surface structure, composition, and morphology of the thin films deposited were analysed using high resolution transmission electron microscopy (TEM) and high angle annular dark field scanning TEM imaging and energy dispersive x-ray measurements. The films deposited were ex...

متن کامل

Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

Lu₂O₃:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films a...

متن کامل

Aqueous Stability of Mesoporous Silica Films Doped or Grafted with Aluminum Oxide

Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010